
ChangeIt3D:
Language-Assisted 3D Shape Edits and

Deformations
Supplemental Material

Panos Achlioptas1,2, Ian Huang2, Minhyuk Sung3,
Sergey Tulyakov1, and Leonidas Guibas3

1 Snap Inc.
2 Stanford University

3 KAIST

A ShapeTalk Data Set

A.1 Curation of ShapeTalk

A.2 Variations among Annotators and Comparison to Full
Descriptions

Figure 3 includes examples among classes not shown in the Main paper. We
include here the responses given by two annotators per pair; demonstrating
qualitatively the degree that annotators vary in their responses both in terms
of content, or the perceived importance of a visual difference (as indicating by
similar spotted differences given in different order).

Figure 4 shows representative annotations collected with our pilot
AMT study where we ask the annotators to describe in detail the
changes/transformations that one needs to apply to a shown source shape to
make it look more similar to a designated target. Typically, such descriptions
are vague and highly under specific ignoring key details that are necessary to
change to make the source shape more similar to the target, prompting to opt
for the task of difference enumeration.

A.3 Data Set Analysis

Table 1 includes the number of total collected utterances, and corresponding
submissions included per class, along with the number of its class’s unique shapes
in ShapeTalk.

As can be seen in Table 2, the distribution of language usage varies from
category to category. For categories that have more complex partonomy (e.g.
“pistol”, “chair”, “skateboard”), the part references are used more, and holistic
shape references are less common. However, for instance, the “bathtub” category
shows a case where language more holistic compared to other categories, and
language used on parts is less common than other categories. Please see Main

2 Achlioptas et al.

Fig. 1: Instructions given to Annotators. Each shape class was presented with a
specialized instruction-set highlighting common part names, and/or styles for the un-
derlying objects (shown examples concern ‘hats’). For each shape classes we requested
a distinct number of maximum differences to be reported (between three and five) ac-
cording to the visual complexity of the class and its underlying density/variations of
objects.

paper, Section 3 for a detailed explanation of the different linguistic categories
used.

A similar analysis regarding the average number of tokens (words) used by
annotators across the different shape classes is presented in Table 3.

ChangeIt3D 3

Fig. 2: Example of a pair of shapes and prompts as shown to annotators.

Table 1: Volume of the final (merged) shape classes of ShapeTalk.

Class Unique Shapes Unique Submissions Utterances

Airplane 2,722 11,130 44,450
Bag 139 834 3,327
Bathtub 663 3,073 12,095
Bed 747 2,985 14,870
Bench 1,657 6,633 25,618
Bookshelf 816 3,263 16,114
Bottle 492 1,968 5,897
Cabinet 246 984 3,860
Cap 208 1,263 3,775
Chair 6,608 15,210 74,743
Clock 580 2,320 9,231
Display 1,174 4,909 14,703
Dresser 1,690 6,740 33,567
Faucet 640 2,560 10,192
Flowerpot 623 2,492 9,867
Guitar 753 3,013 12,024
Knife 424 1,696 6,783
Lamp 2,312 13,642 53,956
Mug 208 832 2,488
Person 94 564 2,820
Pistol 302 1,208 4,832
Scissors 80 480 1,438
Skateboard 152 912 2,724
Sofa 3,065 13,025 51,932
Table 8,176 21,316 88,975
Trash bin 343 1,372 5,346
Vase 823 3,290 13,074
Total 35,737 127,714 528,701

4 Achlioptas et al.

Fig. 3: ShapeTalk annotations across different classes and annotators. The
word modern is included in at least one response.

ChangeIt3D 5

Fig. 4: Examples from our pilot study. In this pilot, Turkers were asked to describe
in language how to transform one shape (source, left-most of each pair) into a target
(right-most shape of each pair). Examples of derived descriptions are shown under each
shape pair. Such descriptions tend to be significantly under- specific highlighting the
hardness of this task.

6 Achlioptas et al.

Table 2: The proportion of utterances containing different types of information, ana-
lyzed based on the words that they contain.

class part local holistic stylistic dimension geometric

Airplane 0.87 0.02 0.13 0.02 0.31 0.33
Bag 0.63 0.10 0.32 0.10 0.28 0.21
Bathtub 0.51 0.10 0.43 0.05 0.32 0.37
Bed 0.80 0.02 0.19 0.05 0.34 0.12
Bench 0.86 0.04 0.14 0.05 0.32 0.22
Bookshelf 0.69 0.04 0.30 0.09 0.32 0.15
Bottle 0.81 0.07 0.19 0.04 0.54 0.21
Cabinet 0.65 0.03 0.34 0.05 0.32 0.17
Cap 0.75 0.02 0.24 0.07 0.35 0.23
Chair 0.88 0.05 0.11 0.08 0.33 0.27
Clock 0.59 0.15 0.39 0.09 0.21 0.30
Display 0.90 0.05 0.09 0.01 0.44 0.28
Dresser 0.76 0.04 0.22 0.06 0.35 0.17
Faucet 0.93 0.05 0.06 0.03 0.36 0.30
Flowerpot 0.67 0.05 0.31 0.04 0.41 0.26
Guitar 0.87 0.09 0.10 0.09 0.17 0.23
Knife 0.87 0.13 0.12 0.11 0.26 0.33
Lamp 0.83 0.04 0.17 0.06 0.38 0.30
Mug 0.75 0.02 0.24 0.02 0.55 0.24
Person 0.72 0.02 0.28 0.03 0.13 0.11
Pistol 0.91 0.07 0.08 0.07 0.34 0.32
Scissors 0.67 0.28 0.08 0.11 0.40 0.27
Skateboard 0.91 0.04 0.09 0.03 0.44 0.26
Sofa 0.85 0.03 0.15 0.05 0.35 0.19
Table 0.76 0.06 0.23 0.06 0.41 0.24
Trash bin 0.71 0.20 0.27 0.08 0.25 0.29
Vase 0.73 0.06 0.25 0.03 0.55 0.21

All 0.81 0.05 0.18 0.06 0.36 0.25

ChangeIt3D 7

Table 3: Average number of tokens and utterances and Hard contexts per
shape class of ShapeTalk. The reported average (last row) is weighted by the number
of utterances collected per each class.

Class Number-Tokens Hardness Prc.

Airplane 6.82 50.18
Bag 6.58 49.95
Bathtub 6.40 49.19
Bed 5.47 49.89
Bench 5.81 48.08
Bookshelf 5.90 49.50
Bottle 6.69 49.96
Cabinet 5.80 49.04
Cap 6.36 49.85
Chair 6.58 46.32
Clock 6.05 49.81
Display 6.61 49.88
Dresser 5.62 49.67
Faucet 6.61 49.80
Flowerpot 5.90 49.63
Guitar 7.69 49.87
Knife 6.55 49.99
Lamp 6.32 52.96
Mug 5.25 49.84
Person 6.52 50.00
Pistol 7.34 50.00
Scissors 5.70 50.56
Skateboard 6.27 49.85
Sofa 5.81 48.71
Table 6.26 72.63
Trash bin 6.59 48.75
Vase 6.02 49.73

Weighted Mean 6.27 53.28

8 Achlioptas et al.

B Details on Listening and Editing Systems and Data

B.1 Dataset Preprocessing (w.r.t. Language of ShapeTalk)

For all deep learning based experiments involving ShapeTalk i.e. Neural Listen-
ing and Language-assisted Editing we remove from the dataset utterances with
more tokens than the 95% percentile (more than twelve words). Moreover, we
replace with a special token (<UNK>) rare words; those that appear in fewer
than two utterances across an underlying train split of ShapeTalk.

B.2 Details on the Train/Test/Val Splits

Our neural-listeners and editors operate with inputs that are comprised by pairs
of shapes coupled with a discriminative utterance for each of their designated
target. Our pretrained generative networks on the other hand expect a simpler in-
put, namely, a single shape. In order to build fair (and least biased) train/test/val
splits and link together in our ChangeIt3DNet framework: i) an editor module
that learns how to change the distractor shape to conform more with the lan-
guage uttered to separate it from a target, together with, ii) a guiding pretrained,
neural-listener that is trained to classify the target shape based on discrimina-
tive language for it (against a distractor), and finally, operate in (i) and (ii)
with latent representations encoding a shape based on a pretrained 3D gener-
ative model; we had to consider different approaches. If data spillage was not
an actual bottleneck the fairest/simplest approach would be to keep everything
between all test/train/val splits disjoint, across all three neural components.
However, given that ShapeTalk was not built (nor should be) with a single spe-
cific train/test/val split in mind; we opted for the least wasteful, and still fair,
data separation: A) we built the generative shape networks with train/test/val
splits each comprised by separate (disjoint with each other) shapes. B) for the
neural-listeners we separate the ShapeTalk shape-pairs according to the splits
we made in (A) according to where the target shape of each pair belongs, i.e., we
ignore the distractor when deciding the split of a shape-pair/language datum.
Last, C) when we train the editor module of ChangeIt3DNet we again use the
same train-split we used for (B) but we exclude first the training pairs for which
the distractor comes from the test split of (A). Thus when reporting neural-
listening accuracy (B) we use and report pairs with unseen target shapes per
the 3D generator. When reporting editing performance, we similarly use unseen
per the 3D generator, distracting shapes coupled with unseen language that was
describing a corresponding target in (B).

B.3 Multi-class learning

We train and extract latent shape representations from 3D shape AutoEncoders
that are trained simultaneously with all classes of ShapeTalk; without special-
izing the creation of a 3D latent space concerning solely a single class. Aside of
logistical convenience, and the increased generality of such an underlying latent

ChangeIt3D 9

space, this choice directly enables us to train neural listeners with all utterances
of ShapeTalk, of all classes, with a single neural-listening system. Despite the
fact that per class-specializing 3D AutoEncoders tend to attain slightly better
reconstructions than our multi-class AEs; a neural listener trained with the ut-
terances concerning all classes of ShapeTalk tends to attain on average higher
accuracy, in many cases up to more than 10% better than if trained only with
the latents/utterances coming from the single underlying class. This performance
boost is especially pronounced in classes with small number of shapes and corre-
sponding discriminative language; implying that there exist learnable geometric
language in ShapeTalk that is transferable across classes and which can act as
a regularization in data spare regimes. Because of this phenomenon, in all our
reported numbers, including those concerning editing we use both a 3D shape-
encoder and a corresponding neural-listener trained with all classes/language of
ShapeTalk.

C Neural Listening-Comprehension

C.1 Main Neural Listening Architecture

We use the context-free variant of ShapeGlot [2] operating with 256D latent rep-
resentations extracted by a corresponding 3D shape generator (a PC-AE [1], or
ImNet [4], or SGF [3]). This listening variant is fast to train, high-performing (as
show in ShapeGlot and PartGlot [8]) and enables us to measure the compatibil-
ity of an arbitrary number of shapes with a given utterance. In terms of hyper-
parameters, we use a word embedding with 128D, and a visual projection-layer
that transforms each input latent code to 128D. For this projection-layer we use
a 2-layer deep MLP network with 128 neurons on each layer, where each layer is
closed with a ReLU non-linearity [11] and a batch-normalization layer [7]. More-
over, we regularize these two layers with 0.2 dropout probability [15]. We also
use a two hidden-layer MLP-based classification-head that operates on a multi-
modal fused representation of the visual signal and the transformed/latent rep-
resentation of each discriminative utterance (see next). The classification head is
comprised by 100, and 50 neurons per hidden (FC/ReLU/batch-normalization)
layer and its final (two) output neurons are implemented with a fully-connected
layer. We note that we apply weight-decay (0.005 weight) on the L2-norm of all
FC layers of our listener. To transform the input tokens into a single linguis-
tic latent representation we experimented with two approaches (LSTM-based
and Transformed-based) each operating and optimizing the underlying word-
embedding vectors. In the LSTM-based setup, we use a unidirectional LSTM [6]
cell with 128D hidden neurons for which we initialize its hidden state with the
128 projected visual representation of each stimulus (we unroll the LSTM twice;
once per shape-utterance of a context). We extract from the LSTM a result-
ing multimodal representation by collecting the maximum values of its output
vectors per each token of the utterance; before passing them to the aforemen-
tioned classification head. For the Transformer-based result, we use a trans-
former encoder instead of an LSTM to encode an utterance and concatenate

10 Achlioptas et al.

the transformer’s final output (upon reaching <eos>) with the projected visual
representation, before passing their concatenation to the listener’s classification
head. We use a transformer with 128D embedding, 4 layers deep, each with 4
attention heads [17].

Note. All our pre-trained models, evaluation and training code will
be released upon publication with detailed documentation to promote
reproducibility.

Order of utterance

L
is
te

n
in
g
A
c
c
u
ra

c
y

Fig. 5: Listening accuracy, per decreasing saliency of an utterance (order
it was given), with different visual shape encoders. For our main neural lis-
tening architecture, we vary the latent visual representations the neural listener is
trained/tested with. This figure shows a positive correlation between the order an ut-
terance was given by an annotator and the capacity of the neural listener to generalize
to it and accurately predict its underlying target. Together with the three 3D encoders
described in the Main paper (PC-AE, SGF, ImNet), we also include here the accu-
racy based on a 2D ResNet-32 encoder pretrained on ImageNet operating with a single
monochromatic rendering of each shape from a fixed point of view (‘ResNet’).

C.2 Discussing Listening Performance

Table 4 reports the attained performance with each of the three 3D latent rep-
resentations across each class. It also includes the attained performance of the
main listener when operating with a 2D-based latent representation. Specifically,
when using a ResNet-32 pretrained on ImageNet to extract the a 512D latent
representation for a shape, based on a 2D monochromatic rendering of it (from
a fixed angles across all shape-classes). Also, we include the performance of a
pretrained CLIP [13] model operating with the same renderings and without
fine-tuning it. It is interesting to note that learning to discriminate fine-grained
shape details with 2D image representations of shapes has advantages: the per-
formance advantage of using latent representations extracted via a image-based
encoder pretrained on ImageNet operating on 2D renderings of shapes was first

ChangeIt3D 11

Table 4: Neural comprehension performance (% accuracy) per shape class.
The reported average (last row) is weighted by the number of utterances collected per
each class.

Class ResNet ImNet PC-AE SGF CLIP

Airplane 69.9 65.4 67.6 69.9 51.0
Bag 48.4 55.0 55.3 61.3 54.8
Bathtub 67.1 56.3 65.6 68.4 52.3
Bed 71.1 63.3 68.7 67.3 51.9
Bench 70.4 66.7 71.0 71.5 52.1
Bookshelf 61.0 58.4 61.8 62.4 52.1
Bottle 64.9 67.4 62.8 67.8 54.3
Cabinet 71.4 61.8 56.9 62.3 52.7
Cap 71.0 60.8 68.3 61.8 54.1
Chair 79.0 71.3 75.0 75.3 53.5
Clock 63.4 56.7 63.6 63.3 55.9
Display 70.7 60.3 66.1 64.1 51.9
Dresser 73.4 64.0 65.4 67.2 52.0
Faucet 64.2 56.4 58.6 61.3 51.1
Flowerpot 65.7 61.6 66.2 64.6 53.3
Guitar 63.7 58.3 59.7 62.7 54.5
Knife 60.8 48.7 58.8 58.3 50.6
Lamp 64.7 58.5 60.8 63.5 52.0
Mug 58.1 62.1 64.1 64.9 50.3
Person 49.3 19.0 39.2 34.3 60.5
Pistol 60.6 58.6 62.6 63.3 50.6
Scissors 50.7 41.5 56.3 51.4 48.8
Skateboard 68.4 58.2 60.5 66.2 47.1
Sofa 75.3 65.3 70.7 69.9 52.5
Table 74.4 67.3 70.2 70.9 53.1
Trash bin 60.9 61.3 63.2 68.3 51.6
Vase 67.1 65.2 66.0 69.0 53.6

Weighted-mean 72.2 65.2 68.7 69.6 52.6

demonstrated in a ShapeGlot-based study [2], and now is further confirmed with
our ShapeTalk (using such image-based latents to train/test our listener gives
overall a 2.6% improvement over SGF). As noted, in Section 4 of the Main paper,
CLIP’s performance is close to random guessing in ShapeTalk, with a notable
exception the class of “Person” for which presumably the original dataset CLIP
was trained on contains a non-trivial amount of references. Last, it is worth re-
emphasizing here that ShapeTalk appears to be a challenging dataset, and thus,
despite using modern deep-learning tools in our approach their overall attained
performance is far from perfect - suggesting that perhaps several breakthroughs
are necessary to attain human-level visio-linguistic understanding of common
3D shapes.

12 Achlioptas et al.

D Editing Experiments

We note that unlike the practice we followed for 3D shape generators and neural-
listeners (see also Subsection B.3) when training a ChangeIt3DNet we use ex-
clusively the corresponding data of each underlying class we are concerned with
i.e., we train a different ChangeIt3DNet per class.

The shape editor (E) depicted in the architecture diagram of Main paper (Fig.
6), is comprised by two shallow MLP-based layers that are responsible for finding
i) the latent direction that needs to be followed and added to the input shape
latent to achieve the requested change, and ii) for finding a scalar value that
vector-multiplies the found direction i.e., a value acting as the magnitude that
captures how far the direction should be followed. Aside of providing as input to
E the ‘source’ latent which we wish to change (a distractor shape in ShapeTalk
data), we also encode and provide as input a corresponding utterance that is
incompatible with the source and which indicates the apply to it (this utterance
take from ShapeTalk was given by an annotator to describe a different target-
shape in a context involving the input source). To encode the utterance we use
the same LSTM-based architecture described in Subsection C.1. We concatenate
(fuse) this linguistic representation with a 2-layer deep MLP-ReLU network with
[256, 256] neurons operating on the shape-latent, and acting as a projection layer;
before passing the concatenated representation to the final two shallow MLPs
(with [256, 256] and [256, 1] neurons each) responsible for the finding of the
aforementioned latent direction and its magnitude. We note that the found latent
direction is unit-normed normalized before multiplied with the corresponding
learned magnitude.

The loss function used to optimize E is comprised by two terms: a cross-
entropy term produced by the frozen pretrained listener (L); acting on the orig-
inal vs. the edited latent codes, with the edited latent indicated as the ground-
truth target (for the same input utterance used to make the edit), and a second
term that controls how far the edit is from the input latent; given as the L2 dis-
tance between the two vectors. We control the balance between these two terms
via a single scalar hyper-parameter, which we denote as γ which scales down
the relative importance of the second term compared to the first (γin[0, 1]).
Figure 6 shows the effect different values of γ across our main evaluation metrics
have when using the SGF backbone (note the x-axis across all metrics being
referred to as the ‘identity-γ’ since this hyper-parameter directly affects the
preservation of the identity between the edited and input latent shapes). The
findings presented in Figure 6 are intuitive: the larger values we use for γ the
more we preserve the identity between the input/output as reflected in both
geometric metrics (GD, l-GD), while also naturally improving in the CP metric,
since we apply a more conservative (per L2-distance) change. Of course, this
improvements come at the expense of the utterance-edit listening compatibil-
ity as measures in LAB in bottom-right sub-figure. Last, in this figure we note
how the ChangeIt3DNet trained with Self-Contrast (see also Main Section 5)
improves the GD, l-GD and CP metrics at a slight expense for the LAB. This
is also an intuitive finding, since when self contrast is off, i.e., we contrast in

ChangeIt3D 13

Table 5: Quantitative comparisons when using different backbone 3D-shape
generators in ChangeIt3D.

Backbone GD (↓) LAB (↑) CP (↓) l-GD (↓)

ImNet [4] 0.494 62.4 6.8 0.993
PC-AE [1] 0.399 71.5 5.1 0.847
SGF [3] 0.356 77.7 3.8 0.818

the cross-entropy loss term, the edited latent with the actual target latent from
the relevant context in ShapeTalk; we force in many cases the discovery of large
in magnitude edits to compensate for the fact that many ShapeTalk pairs are
significantly different (approx. half of ShapeTalk is made with Easy pairs).

Table 5 reports the evaluation metrics for ChangeIt3DNet (Decoupled and
with Self-Contrast when using three different backbone architectures for the 3D
shape AEs (with a γ = 0.4). Across the board all metrics favor SGF. We note
however, that such direct comparison is less robust to interpretation since i)
different backbones have their own prior quality in shape reconstructions which
is an orthogonal problem to the editing, and ii) LAB is measured with a dedicated
(different) neural-listener operating with the latents of the underlying 3D AE;
which as shown in Table 4 have different performance for the listening task.
Last, we note that to measure the l-GD, GD based on Chamfer distance, and
CP, we rely on a single final shape representation, for all backbones, that of
3D pointclouds with 2048 points per shape. PC-AE and SGF directly output
3D pointclouds; for ImNet we use iso-surface extraction to convert the output
implicites to meshes that we then convert o 3D pointclouds by surface sampling.

Finally, we note that for the Monolithic baseline (Section 6) we introduce an
extra symbol in our vocabulary to denote the concatenation of the utterances
given by a single annotator (< merge >) and build its architecture based on
3D pointcloud (PointNet-based [12]) shape encoder which encodes the source
(distractor) shape at 2048 point resolution, and an LSTM-based utterance-
encoder similar to the one described in Subsection C.1. This utterance-encoder
processes the entire sequence of all ‘merged’ utterances given by an annotator
in the context of a ShapeTalk shape-pair, in the same order. The outputs of
the two encoding networks are concatenated and are further processed by an
MLP (ReLU-batch-normed-based) decoder with [256, 256, 512, 2048×3] neurons
which is trained to reconstruct the corresponding target shape from ShapeTalk
according to a Chamfer-distance loss-function.

D.1 More Qualitative Results for Editing

Figures 7, 8 show qualitative examples of language-assisted editing based on
ChangeIt3DNet when using an IM-Net and PC-AE shape encoder, respectively.
While 8 shows that utterance-compatible changes can be done in the PC-AE
latent space, 7 shows that this can be done with comparable reconstruction
quality with the IM-Net backbone, and the added benefit in this case of attaining
high-quality meshes as well.

14 Achlioptas et al.

Identity-γ

G
D

Identity-γ

l-
G
D

Identity-γ

C
P

Identity-γ

L
A
B

Fig. 6: GD, l-GD, CP and LAB scores as the weight of the identity penalty varies in the
training loss of ChangeIt3DNet. We find that as the requirement for identity preserva-
tion becomes more stringent, a trade-off between GD and l-GD begins to happen with
increasing LAB-scores, indicating tension between the two underlying objectives. The
histograms are average scores across the metrics over three classes (chairs, tables and
lamps) and the bars reflect the variance among them.

ChangeIt3D 15

Fig. 7: Qualitative examples of language-assisted edits in the IM-Net latent space. Note
that we show both the pointcloud and the mesh for each input-output pair, and that
the 2048 points in each pointcloud are sampled on the reconstructed mesh.

Fig. 8: Qualitative examples of language-assisted edits in the PC-AE latent space.

Figure 9 shows failure cases of editing with ChangeIt3DNet via an SGF
backbone, complementing the qualitative results presented in the Main paper
(see Main Figure 4). As we can see in the examples presented in this figure
our language-assisted editing task and approach can suffer from a variety of
different challenges. From editing ‘entanglement’ (changing more elements than

16 Achlioptas et al.

Fig. 9: Qualitative examples demonstrating failure cases of language-assisted edits in
the SGF latent space via ChangeIt3DNet. Oftentimes the resulting edits successfully
apply the requested command, but also affect other geometric elements not mentioned
and expected to change in language (Entangled Edits). The method can also strug-
gle when the input language is complex or ambiguous in meaning. Finally, there are
cases where the requested edit is difficult to be discovered in the latent ‘neighborhood’
of the underlying object (wheels for a reclining chair); or, the default output shape-
reconstruction of the AE is poor (example F) making the edit task hard in ab initio.

those described in the input language), to a more fundamental inability to un-
derstand and apply ambiguous or complex language, or, more basic problems
resulting from the a-priori inability of the 3D backbone to reconstruct an object
(especially when its geometry is rarer within the dataset). These results point
towards several promising directions our method can be improved in future work.
Ranging from using more disentangled, part-aware latent spaces e.g, [5,10,14];
to altogether lifting the premise of operating inside a latent space, and instead
work directly on the primal object space with appropriate deformation-aware
handles e.g., [16,9].

D.2 Retrieval-Oriented Results:

Lastly, Figure 10 shows a few qualitative examples for the retrieval-based base-
line, where the nearest neighbor of shapes seen during training is retrieved based
on the predicted edit vector predicted within the ShapeGF latent space. We find
that though the retrievals oftentimes satisfy the language instruction, it does so
without preserving other parts of the input object (a good example of this can be
seen in the first chair in the middle column of Figure 10). This is a testament to

ChangeIt3D 17

Fig. 10: Qualitative examples of language-driven retrieval in the ShapeGF latent
space.

the sparsity of the object space with respect to fine-grained language-articulable
differences between shapes.

18 Achlioptas et al.

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.J.: Learning representations
and generative models for 3D point clouds. In: International Conference on Machine
Learning (ICML) (2018)

2. Achlioptas, P., Fan, J., Hawkins, R.X., Goodman, N.D., Guibas, L.J.: ShapeGlot:
Learning language for shape differentiation. In: International Conference on Com-
puter Vision (ICCV) (2019)

3. Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S.J., Snavely, N., Hari-
haran, B.: Learning gradient fields for shape generation. In: European Conference
on Computer Vision (ECCV) (2020)

4. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

5. Dubrovina, A., Xia, F., Achlioptas, P., Shalah, M., Groscot, R., J., G.L.: Com-
posite shape modeling via latent space factorization. International Conference on
Computer Vision (ICCV) (2019)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
(1997)

7. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning
(ICML) (2015)

8. Koo, J., Huang, I., Achlioptas, P., Guibas, L.J., Sung, M.: PartGlot: Learning shape
part segmentation from language reference games. In: Conference on Computer
Vision and Pattern Recognition (CVPR) (2022)

9. Liu, M., Sung, M., Mech, R., Su, H.: DeepMetaHandles: Learning deformation
meta-handles of 3d meshes with biharmonic coordinates. In: Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021)

10. Mo, K., Zhu, S., Chang, A.X., Yi, L., Tripathi, S., Guibas, L.J., Su, H.: PartNet: A
large-scale benchmark for fine-grained and hierarchical part-level 3D object under-
standing. In: Conference on Computer Vision and Pattern Recognition (CVPR)
(2019)

11. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: International Conference on Machine Learning (ICML) (2010)

12. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for 3D
classification and segmentation. In: Conference on Computer Vision and Pattern
Recognition (CVPR) (2017)

13. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision. Computing Research Repository
(CoRR) abs/2103.00020 (2021)

14. Schor, N., Katzir, O., Zhang, H., Cohen-Or, D.: CompoNet: Learning to gener-
ate the unseen by part synthesis and composition. International Conference on
Computer Vision (ICCV) (2019)

15. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research (JMLR) (2014)

16. Sung, M., Jiang, Z., Achlioptas, P., Mitra, N.J., Guibas, L.J.: DeformSyncNet:
Deformation transfer via synchronized shape deformation spaces. In: ACM SIG-
GRAPH Asia (2020)

ChangeIt3D 19

17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NeurIPS) (2017)

