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Abstract. In this work, we address the task of Language-Assisted 3D
Shape Edits and Deformations (which we name ChangeIt3D). Given a
3D representation of an object and free-form natural language describing
desired changes or modifications to the shape of the object, the task is
to transform the input object’s geometry in a manner that reflects the
requested changes – for example, to modify a 3D chair model to make
its legs thinner, or to open a hole in its back. To tackle this problem in
a way that promotes open-ended language usage allowing fine-grained
shape edits, we introduce the largest existing corpus of natural language
describing shape differences, which we call ShapeTalk. This dataset
contains over half a million discriminative utterances produced by con-
trasting the shapes of pairs of common 3D objects for a variety of object
classes and degrees of similarity. We introduce metrics for the quantita-
tive evaluation of language-assisted shape editing methods that reflect
key desiderata within this editing setup. We also design an effective and
modular framework for ChangeIt3D that can combine an arbitrary 3D
generative model of shapes with our in-house, ShapeTalk-based, text-to-
shape neural listener. Crucially, our modules are trained and deployed
directly in a latent space of 3D shapes, bypassing the ambiguities of “lift-
ing” 2D to 3D when using extant foundation models and thus opening a
new avenue for 3D object-centric manipulation through language.

1 Introduction

Visual content creation and adaptation, whether in 2D or 3D scenes, has tradi-
tionally been a time-consuming effort, requiring specialized skills, software, and
multiple iterations. The use of language promises to democratize this process
and let ordinary users perform semantically plausible content addition, deletion,
and modification by simply describing their intent in words – and then letting
AI-powered tools translate that into edits of their 3D assets. Given the current
interest in making the Metaverse useful for many people, such language-based
tools are an essential future technology4.

Corresponding author, wepage: Panos Achlioptas, https://changeit3d.github.io
4 An example is the AI builder Bot recently proposed by Meta AI.

https://changeit3d.github.io
https://www.youtube.com/watch?v=62RJv514ijQ
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Fig. 1: Samples of contrastive language in ShapeTalk. In each sub-box shape
differences between a target and a distractor object of the same class are enumerated
by an annotator (by decreasing order of importance in the annotator’s judgement).
Interestingly, both continuous and discrete geometric features that shapes share across
categories emerge in the language of ShapeTalk; e.g., humans describe the “thinness”
of a chair leg or of a vase lip or of a blade handle (top boxes), or the presence of a
semantic-part (“arm”) that a lamp or a clock or a monitor can have (bottom boxes).

This work focuses on the task of transforming the shape of a 3D object in a
fine-grained manner according to the semantics of free-form natural language.
Operating directly in a 3D representation has many advantages for downstream
tasks that need 3D-awareness, such as scene composition. Even if only 2D views
are needed, 3D provides superior attribute disentanglement and guarantees view
consistency. Note that modifying the 3D geometry of an object in ways that are
faithful to its class semantics is itself a highly non-trivial undertaking (e.g.,
stretching a sedan should keep the wheels circular) and has been the focus of
recent work [42,43].

Our language-driven shape deformation task is applicable to many real-world
situations: e.g., in assisting visually-impaired users, graphic designers, or artists
to interact with objects of interest and change them to better fit their design
needs. We term this task as ChangeIt3D and build a framework to address
it, consisting of three major components: a large scale dataset with an order
of magnitude more utterances than in previous work (Section 2), a modular
architecture for implementing edits on top of a variety of 3D shape representa-
tions, and a set of evaluation metrics to quantify the quality of the performed
deformations.

To link 3D shapes and free-form language we introduce the ShapeTalk
dataset with over half a million discriminative utterances produced by contrast-
ing pairs of common 3D objects for a variety of object classes and degrees of
similarity. Shape differentiation helps focus the language on fine-grained but
important differences, differences that might not rise to the surface when we
describe object geometry individually, as in the PartIt work [19], where clearly
different geometries can end with very similar descriptions because they share a
common underlying structure. Furthermore, unlike the dataset used by Shape-
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Glot [4], our goal here is to obtain as complete descriptions of the geometry
differences between two objects as possible, with the goal of enabling reconstruc-
tion of the differing object from the reference object and the language – going
well beyond discrimination. Examples of utterances in ShapeTalk are provided
in Figure 1.

We approach ChangeIt3D by enabling shape edits and deformations on top
of a variety of 3D generative models of shapes, including Point-Cloud Auto-
Encoders (PC-AE) [3], implicit neural methods (ImNet) [10] and Shape Gradi-
ent Fields (SGF) [6]. We tackle this task by implementing a ShapeTalk-trained
text-to-shape neural listener [4,24] (a network taking a query utterance and dis-
criminating the target from the distractors), learned directly in a latent space of
3D shapes. We note that a great deal of the ShapeTalk dataset refers to shape
parts. Even though the underlying shape representations we deploy do not have
explicit knowledge of object parts, we demonstrate that our framework can ap-
ply a variety of part-based edits and deformations. This confirms a remarkable
finding – already described in [24] – that the notion of parts can be learned from
language alone, without any geometric part supervision.

Making edits to an existing shape is more demanding than ab initio shape
generation as (a) it requires understanding of the source shape and its relation
to the modification language, and (b) changes to parts not referenced in the
modification utterance should be avoided. Hence, a further contribution of our
work is a set of evaluation metrics for the modification success and quality,
reflecting realism of the resulting shape, faithfulness to the language instructions,
and stability or avoidance of unnecessary changes. Such metrics are essential for
encouraging further progress in the field.

In summary, this work introduces ChangeIt3D— 1 a new setup for doing
language-driven shape deformations directly in 3D. The task is enabled by
ShapeTalk— 2 our new large multimodal dataset with referential language,
which differentiates shapes of common objects with rich level of detail. We
approach this task with 3 a modular framework supporting a variety of 3D
shape representations and implementing fine-grained edits guided by a 3D-
aware neural-listening network. To set the stage for future developments on the
ChangeIt3D task we introduce 4 a set of intuitive evaluation metrics for the
shape edits and deformations performed.

2 Related Work

3D Deformation Learning. There is a large body of literature for learning de-
formations of 3D shapes targeting various applications. These include target
fitting [22,25,45,17,52], finding shape correspondences [16,15], doing deforma-
tion transfer [12,39] and shape completion [26], or performing deformation-
aware shape retrieval [42,43]. Also, there have many works for learning free-
form deformations (offsets or new positions of points) [53,22,25,45,17], learning
flows/trajectories via ODE [49,23,20,6], or learning deformations based on a
given cage mesh [52], keypoints [27], bounding primitives [39], or part struc-



4 Achlioptas et al.

tures [47,13,31,50]. While these works present a large space of options in imple-
menting deformations in 3D for various purposes, none of them utilizes natural
language to guide the desired edit – which is the focus of this work.

Language-Guided Manipulation and Editing. Recently, the big success of
CLIP [36] has accelerated attempts to build language-guided editing systems —
either for images, or to a lesser degree, for 3D shapes. As CLIP is trained with
pairs of images and texts, most recent efforts have been made primarily in the 2D
image domain. After DALL-E [37] introduced the idea of creating images from
texts using a pretrained CLIP model, subsequent work including StyleCLIP [33],
StyleGAN-NADA [11], and Paint by Word [5] extended the idea to edit a given
image based on linguistic instructions and guidance. For 3D, Text2Shape [8] and
the work by Ma et al . [29] are the pioneers introducing a framework synthesizing
3D shapes and scenes from texts before CLIP. Then, CLIP-Forge and CLIP-
NeRF followed the direction while leveraging CLIP and linking 3D to 2D with
either joint embedding or neural rendering. These methods, however, focused
mainly on generating 3D shapes. For editing, Part2Word [40], PartGlot [24], and
TGNN [21] made a first step in learning the relations between words and parts
in a shape [40,24]; or words and objects in a scene [21]. However, the part or
object localization was not exploited to manipulate shapes. To our knowledge,
Text2Mesh [30] is an existing work demonstrating language-guided 3D shape
manipulation, but its editing is limited to adding color and geometry texture.
Our work introduces a framework for editing the shape and the topology of a 3D
object in a fine-grained manner, based on linguistic descriptions.

Language-Shape Datasets. While there is an increasing number of novel
datasets providing referential language grounded on 3D models, overall visio-
linguistic data for 3D data remain sparse. Some notable examples include
ShapeGlot [4], SNARE [41], and PartIt [19]. (See a quick comparison be-
tween these and our ShapeTalk in the inset Table). With 527K utterances

Dataset #
utter.

# 3D
models

Multi-
Categ.

Multi-
Utter.

ShapeGlot [4] 79k 7k No No
SNARE [41] 50k 8k Yes No
PartIt [19] 10k 10k Yes No

ShapeTalk (Ours) 528k 37k Yes Yes

and a collection of ∼ 37k shapes,
our ShapeTalk provides an order of
magnitude more utterances than the
runner-up (ShapeGlot [4], with ∼ 79k
references) and more than 3 times the
number of shapes than the runner-up
(PartIt [19], with ∼ 10k shapes). More importantly, ShapeGlot [4], SNARE [41],
and PartIt [19] do not provide a complete enumeration of most differences each
distractor-target pair has, whereas our dataset does. In conjunction with the
fact that language naturally under-specifies the full set of required changes,
ShapeTalk is better equipped to handle the challenging task of language-assisted
shape editing. Table 4 shows the benefit of having more utterances for the same
distractor-target pair. While there exist more recent datasets connecting lan-
guage and 3D such as ReferIt3D [1], ScanRefer [9] and Rel3D [14], their focus is
on 3D scenes instead of objects.
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3 The ShapeTalk Data Set

We will refer to a distractor-target tuple (see examples in Figure 1) as a commu-
nication context, or context for short. In order to elicit diverse and fine-grained
contrastive language, ShapeTalk incorporates two types of contexts – Hard and
Easy – based on the notion of shape-wise similarity by L2-distance within the
latent space of a pretrained pointcloud autoencoder [3]. Hard contexts are cho-
sen out of pairs of objects with the highest similarity. Easy contexts are chosen
out of pairs of objects with average similarity. ShapeTalk shapes are aggregated
from ShapeNet [7], ModelNet [48] and PartNet [32]. After removing duplicates
and models of poor quality, ShapeTalk provides discriminative utterances for
a total of 35,737 shapes, across 29 object classes. Overall, ShapeTalk contains
72,491 distinct contexts ordered tuples (51.9% of which are Hard), and a total
of 528,701 utterances (averaging 7.29 utterances per distinct context).

Creating linguistic descriptions capturing all exact differences between two
shapes is a very difficult task, because of the brevity and intrinsic ambiguity of
language. The amount of specificity required is typically overwhelming even for
modestly differently-looking objects, as shown in our pilot AMT experiments
(Supp. Fig.2). Thus, instead of demanding our annotators to describe all the
differences between shapes, we ask them to enumerate discriminative differences,
up to a maximum number of differences, in decreasing order of “obviousness”,
whether visual or linguistic. Our 2,154 distinct annotators are instructed to
provide descriptions that differentiate the two shapes within the context. They
do so class-by-class, not only to lessen their cognitive burden, but also to allow
them to transfer experience of annotating past examples within the same object
class. For each class, we provide visual examples of objects with annotations
of part-names as well as names for different shape styles (e.g. “bowler” hat vs.
“ivy” hat), but do not require them to use these names in their annotations. The
resultant annotations form ShapeTalk (see Figure 1.). All objects of a class have
been considered as a target in some context within the dataset. All contexts have
been described by at least two annotators. The sole exception is the chair class,
where only one annotator saw each context. We augment the language for this
class with 109,718 Chairs In Context utterances from the ShapeGlot dataset.

ShapeTalk utterances are highly diverse. To shed light on the types of lan-
guage used in ShapeTalk, we manually curate a large subset of word groups from
user utterances into 5 different categories shown in Figure 2. We connect an ut-
terance to these categories according to word membership. Note that in addition
to these categories, an utterance can also contain “holistic” shape information
if it does not reference any Parts or Local features, but rather describes the
whole shape. Table 1 shows the proportion of utterances that contain different
kinds of information, according to word membership.

Note that across all the classes, most utterances refer to shape parts (81%),
with descriptions often specifying dimensional (36%) and geometric characteris-
tics (25 %), whereas stylistic information is rarer (6%). However, the distribution
depends also on the category (See Supp.). 59% of utterances that reference parts
and 53% of utterances about local features provide details about style, dimen-
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Category Examples

Part legs, handles
Local edges, points, holes
Stylistic modern, classic
Dimensional big, small, long, short
Geometric hexagonal, triangular

Fig. 2: Word categories. As this utterance
references both parts and local features,
it is not “holistic”.

class part local
holi-
stic

styli-
stic

dimen-
sional

geom-
etric

all 0.81 0.05 0.18 0.06 0.36 0.25
all easy 0.78 0.04 0.20 0.07 0.30 0.25
all hard 0.82 0.06 0.16 0.05 0.40 0.24

Table 1: The proportion of utter-
ances containing different types of
information, analyzed based on the
words that they contain. The stats
across categories are shown in Supp.

Table 2: Proportion of utterances contain-
ing joint information about a certain level
of visual granularity (holistic, parts, local)
and different characteristics (stylistic, di-
mensional, geometric).

Stylistic Dimensional Geometric

parts 0.040 0.270 0.204
local feat. 0.004 0.009 0.016
holistic 0.017 0.083 0.039

Table 3: Proportion of utterances contain-
ing information about style, dimensions,
or geometric shape at the three levels of
visual granularity, for Easy, Hard and all
contexts.

All Easy Hard

parts 0.59 0.55 0.63
local feat. 0.53 0.50 0.55
holistic 0.72 0.69 0.75

sionality, geometric shape. A higher percentage (72%) of holistic descriptions
have similar qualifications.

What kind of characteristics (geometric, stylistic or dimensional) are used
most for which level of visual granularities? Table 2 shows the number of ut-
terances that contain joint information about different kinds of characteristics
and different levels of visual granularities. For parts and holistic utterances, far
more descriptions specify dimension than style and shape combined. For local
features, however, geometric details are more popular than style and dimension
words combined.

Language becomes more fine-grained in Hard contexts than for Easy con-
texts. In the hard context, utterances are 4% more likely to reference parts,
2% more likely to reference local features, and 10% more likely to describe di-
mensions. On the other hand, in Easy contexts, holistic and stylistic language
are more common. The discrepancy can be further shown across different visual
granularities, where the proportion of utterances that contain information about
style, dimension or geometric shape is always higher for Hard contexts in com-
parison to Easy ones. As such, the Easy and Hard contexts provide a sensible
way to vary language granularity.

More details regarding the curation process, the collected data, and its anal-
ysis can be found in the Supp.
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4 Desiderata for Language-Assisted Visual Edits &
Evaluation Metrics

In this section, we discuss criteria for evaluating the quality of any general ap-
proach targeting language-assisted visual edits. We begin by making a few salient
observations regarding the nature of the ChangeIt3D task, that will guide us in
the introduction of relevant metrics and in building our framework in Section 5.
We note that the introduced metrics and algorithms below are flexible and can
be adapted to operate with any standard 3D representation.

There are delicate ambiguities when trying to assess how well a proposed
shape change addresses a discriminative utterance. For example, consider the
expression “has thinner legs” interpreted as an intended geometric change for
a given chair. There are two main obstacles in deciphering what exactly an
appropriate change in this situation should look like. First, natural language
for continuous changes is often under-specific; e.g., exactly how much thinner
should the legs become? Even for expressions involving discrete elements, e.g.,
“has armrests”, there is an infinite pool of geometries and placements that can
semantically satisfy (albeit to different degrees) the meaning of such an instruc-
tion. The following two metrics (LAB and CP, see below) aim at characterizing
the extent to which the requested visual change has been achieved while con-
straining the output and its change into a feasible set – i.e., a chair with thinner
legs should still look like a chair. The second cautionary point in our quest on
defining success of an output change concerns the fact that oftentimes the intent
of the linguistic instruction is local. In other words, only a subset of the input
geometry is being referred to, and thus is expected to change. Any ChangeIt3D
method should avoid unnecessarily modifying the back of chair when prompted
with “has thinner legs”. This is a very subtle issue as there can of course be
semantic constraints that relate part geometries. Our final metric, l-GD, aims at
assessing this quality, by inspecting the geometric stability of the input/output
pairs on such non-referred semantic parts.

Specifically, with the above observations in mind, we propose the following
metrics:

1. Linguistic Association Boost (LAB) If the applied visual change reflects
the semantics of the language, then the modified item should have higher visio-
linguistic association with the input instruction than the original, unmodified
item. Algorithm: Use a pretrained neural listener (a network finding the target
shape from the distractors given a query utterance) to measure the difference
in the predicted association score between each of the two (input/output) items
and the instruction. Assuming a good (oracle) neural listener, asking it if it
finds the changed item more compatible with the language or the input is an
obvious choice – but, it does not explicitly address the under-specificity problem
of the language mentioned above. All the following metrics constrain the space of
possibilities in the change space, and as such LAB should always be considered
together with at least one of them (preferring Pareto-optimal methods in the
combined metrics).
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2. Geometric Difference (GD) For two output shapes derived by the same
input shape and language, and with both scoring equally in LAB, it makes sense
(on the average) to prefer the shape that is shape-wise more similar to the input.
For such an output is more likely to have preserved the overall identity of the
input, possibly in areas that are not referred in the language. Algorithm: Here
one can use any standard pairwise shape difference metric, such as the Chamfer
distance [2] or Hausdorff distance.

3. localized Geometric Difference (l-GD) If at test time, we have access

Fig. 3: By removing the
referred part (legs), l-
GD improves the fidelity
of shape similarity fo-
cusing on the relevant.

to the geometry of the referenced shape elements (e.g.,
part information) involved in the change for both the
original and resulting shapes, it makes sense to remove
them from the above stability metric. For example, the
inset figure 3 shows a shape modification from the lin-
guistic instruction “has thinner legs”. In such a case, it
is acceptable to permit the output to significantly (ar-
bitrarily) differ from the input on those referred part(s)
– but not in others. Algorithm: Given a set of linguis-
tic instructions concerning specific semantic parts and a
segmentation algorithm that can deduce semantic parts
of shapes, use it to predict the shape parts of the input
and output, and remove all parts mentioned in language
before computing the GD above.

4. Class Preservation (CP) Our last metric is com-
plementary to the previous two metrics that focus on
the ‘minimality’ of change and aims at constraining the solution space of possi-
ble outputs differently. Simply put, CP expects the output to preserve the input
shape’s class, prioritizing thus realistic looking outputs. The necessary underly-
ing assumption here is the use of language that reflects differences among same-
class objects (which is the case for ShapeTalk). Algorithm: Given a shape clas-
sifier (typically another pretrained network), compute the absolute difference
of the probability assigned to the underlying class between the input/output
shapes. We remark that many distance functions for probabilities, e.g., EMD,
KL-Divergence, etc., can be used here to measure shape-class deviations among
the input/output, making this metric more similar to existing ones for generation
quality (e.g., Inception Score [38])5.

Discussion. Clearly the above metrics are imperfect due to the ambiguity
and lack of specificity inherent in natural language6. There can also be conflicts
between the metrics, say between LAB and CP, as faithfully obeying language

5 Unlike ab initio generation however, the conditional nature of ChangeIt3D allows us
to directly compare each input-output pair of a test collection, and in our limited
exploration we did not observe a significant benefit by using different probability
distances.

6 While ambiguity and under-specificity can be seen as drawbacks of a language-based
approach, they are also strengths, as they make it possible for everyone to use the
proposed tools.
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Fig. 4: Qualitative edits produced by ChangeIt3DNet. The results are based on
an SGF backbone AE, decoding pointclouds with 2048 per shape. The achieved edits
are oftentimes local, e.g., thinner legs, fine-grained, as in circle in the back, or entail
high-level and complex shape understanding, e.g. it appears more sturdy. Remarkably,
these edits are derived by ChangeIt3DNet which does not utilize any form an explicit
geometric local prior of shapes (part-like, or otherwise); but instead learns solely from
the implicit bias of training with referential language.

the backrest of the
chair is curved.

it appears more sturdy. the target 's top is
a semi circle.

it has a rectangular top.

Fig. 5: Mesh outputs. Green is input; red is output. The shown meshes are derived
by estimating the magnitude of the predicted gradient from our pretrained SGF AE
and applying marching cubes [28] to the resulting unsigned distance field. The corre-
sponding pointcloud predictions from SGF are included in the above Figure 4.

instructions might take take us out of the class manifold for the object (e.g .
removing the seat from a chair). In general, we would like to have algorithms that
sit on some Pareto-optimal boundary regarding the metrics (so it is impossible to
improve one without decreasing another). This also suggests multiple directions
for future work, including (a) generating a distribution of possible modifications
to show the user different options, or (b) allowing a natural language dialog
with the user to iterate over the modifications — topics beyond the scope of this
paper.
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Fig. 6: Overview of ChangeIt3DNet, our modular framework for ChangeIt3D
task. In Stage 1, we pretrain a shape autoencoder for shapes (using traditional re-
construction losses), freeze the encoder and use the encoded latents of the target and
distractor to pretrain a neural listener (using classification losses). In Stage 2, we use
the pretrained autoencoder and neural listener to train a shape editor module to edit
shapes within the encoded latent space in a way that is both consistent with the lan-
guage instruction and also minimal. All modules with locks indicate frozen weights.

5 Method

Due to the lack of prior work directly relevant to our task (please also see Sec-
tion 2), there is a wide range of options for potential baseline methods. Here, we
focus on one general approach and leave other possibilities for future exploration.

Figure 6 shows a high-level overview of our framework named
ChangeIt3DNet. Specifically, in this framework we link a 3D generative model
G (here instantiated as an autoencoder) to a neural listener L, a discriminative
network that, given an utterance and a pair of input shapes, assigns high prob-
ability to the most utterance-compatible shape within the pair. See [4,24] for
such listeners. L is used to guide the 3D generation by “editing” the input shape
in G’s latent space to be more utterance-compatible. This high-level idea has
recently been used in image editing work [33].

To keep things modular, we propose to learn the editing process via a two-
stage approach. As the generative model G needs to capture sufficient geometric
information, we pretrain an autoencoder during the first stage to achieve good
reconstructions. Once G is pretrained, L is trained to associate higher utterance-
compatibility with the target shape than with the distractor shape, using the
latent representations given by the pretrained network G as input.

In the second stage of our approach, we link the frozen networks L and
G together via the Shape Editor E, a low-capacity network that learns to find
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editing directions in the latent space of G through predicting an update vector by
regressing in a decoupled manner, its magnitude and direction. As Table 6 shows,
this decoupling is empirically important. This update vector is then applied onto
the source shape latent representation additively, promoting a direct interaction
between the source representation and the edit vector. During this stage, our
model uses frozen weights for the encoder, decoder and neural listener L, and
learns the weights for the shape editor E so as to 1) preserve similarity to the
original input shape through regularization of the update magnitude and 2)
maximize the L-evaluated utterance compatibility of the updated shape latent
representation over that of the original shape. The use of the original shape for
L’s comparative context (here termed “self-contrast”) is important — we find
that the alternative approach of replacing it with the ground-truth target shape
has a negative influence, oftentimes leading to violation of similarity preservation
in order to achieve high language compatibility (see Table 6). Figure 6 shows the
self-contrast setup. Details on the specific implementation of L, G and E can be
found in Supp.

We also experiment with an alternative variant where instead of aiming to
satisfy a pretrained neural listener, this variant is being optimized to reconstruct
the ground truth target shape, which we call refer to as the Monolithic Model.
Given a context (i.e. a pair of target and distractor shapes) and an utterance,
an encoding of the distractor is fused together with a learned representation of
the utterance (we experimented with both a transformer-based [44] and LSTM-
based [18] utterance encoding), and an MLP-based decoder is used to output
a predicted target reconstruction. While this benefits from being trained end-
to-end with a well-studied reconstruction loss, such as the Chamfer loss [3], it
suffers more from the ambiguity of language, as many changes to the input
shape are undescribed by the language input but nonetheless expected by the
reconstruction task. To combat this, we input the full collection of utterances
for each context, concatenated in the annotator-specified order.

Finally, we also implement a shape retrieval model (which we call Neighbor
Search) that uses the trained encoder withinG and the trained shape editor E to
predict an updated latent code. Then, instead of decoding, we retrieve a nearest-
neighbor among shapes in the training examples. This allows us to verify the
quality of E and the encoder, decoupled from the quality of the decoder (which,
as [46] shows, can bottleneck the output quality). This naturally also gives rise
to a useful search-oriented application conditioned on a source shape and a
language utterance. Refer to Supp. for more details and diagrams of Monolithic
Model and Neighbor Search.

6 Experimental Results

We separate the shapes involved in ShapeTalk into disjoint train/validation/test
sets that include 85%, 5%, 10% of all underlying shapes, respectively. Our neural
listeners and the 3D generative networks are trained, validated and tested on
these splits.
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6.1 Neural Comprehension of Referential Language for 3D Shapes

Table 4: Neural comprehension performance. Backbone indicates the underlying
model. Overall reports average prediction accuracy for the entire test set across all
classes of ShapeTalk. Subpopulations show average accuracy among the specified parts
of the data, i.e. First : on utterances indicated as most salient by an annotator (ut-
tered first), Last : least salient utterance (uttered fifth), Easy : accuracy involving least
visually similar pairs, Hard : accuracy with pairs having the highest visual similarity.
Concat reports the accuracy when we concatenate, and train/test the same architec-
tures with all the utterances given by an annotator in a context.

Backbone
Subpopulations

Overall First Last Easy Hard Concat

ImNet 65.2 67.0 61.3 68.8 61.9 77.8
PC-AE 68.7 70.2 64.8 72.4 65.3 81.2
SGF 69.6 72.0 64.1 74.1 65.4 81.3

For our neural listeners we use the context-free architecture introduced in
ShapeGlot [4] throughout this work. One salient change we apply to it is replac-
ing its LSTM-based utterance encoder with a Transformer-based architecture
similar to what was done in PartGlot [24] (this improved its training stabilil-
ity and final attained performance). The exact hyper-parameters, regularization
and model selection are described in detail in the Supp. With the listening archi-
tecture being fixed, we ablate its performance when operating with latent shape
representations derived by three widely adopted generative pipelines (AEs): IM-
Net [10], ShapeGF (SGF) [6], and PC-AE [3]. Importantly, these AEs operate
with different underlying 3D shape representations (e.g, input pointclouds vs.
implicits) showcasing the flexibility of our approach.

Specifically, Table 4 shows the percentage accuracies for the neural-listening
comprehension task with each of the pretrained AE backbones. On average, the
accuracy for the SGF backbone is the highest, and close to that of the PC-AE,
both overall, and in almost all of the subpopulations. Surprisingly, it appears that
ImNet fails in comparison to capture some of the fine-grained characteristics that
are necessary for shape discrimination within its latent space. Interestingly, the
“obviousness” captured by the order of the utterance enumeration can also be
seen in the neural-listening results. Namely, for all three methods, we find that
methods tested on the first-enumerated utterances perform better compared to
when tested with the lastly-enumerated ones. Furthermore, the complementary
nature among the different utterances of the same context in ShapeTalk is clear
– for all generative pipelines, neural-listening accuracy is significantly higher (an
increase of 11.7% for SGF) when operating with a concatenation of all context
utterances. In addition to the above table, we remark that when using a publicly
available pretrained CLIP model [36] without fine-tuning it on ShapeTalk, its
accuracy was 52.6%, close to random guessing. This suggests that the fine-
grained language and shape-differences within ShapeTalk are not encompassed
in the large-scale multimodal dataset CLIP was trained on.
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6.2 Editing Experiments

Given the performance advantage of ShapeGF in the listening-comprehension
experiments (Table 4) we will use it to continue our editing-based study. Edit
results based on the other two generative pipelines are also provided in the
Supp. Moreover for our editing experiments we will focus on three classes of
ShapeTalk: chairs, tables and lamps. These classes have the advantage that
are relatively large: each has more than two thousands models, enabling the
training of generative models of sufficient quality; and come with parts annota-
tions, thus enabling the deployment of all our evaluation metrics. Finally, since
our CP and l-GD metrics require an oracle shape classifier and a part segmen-
tation model, respectively, we use the same splits used for ChangIt3DNet to
train: 1) for CP: a PointNet++ [35] object classifier predicting the 29 classes
of ShapeTalk, and operating with surface-extracted pointclouds of 2048 points
per shape. This model achieves an average prediction accuracy of 89.4%. 2) for
l-GD: a PointNet-based [34] architecture adapted for the prediction of semantic
parts of 3D pointclouds. We use pointclouds with 2500 points per shape, an-
notated with part labels extracted from the ShapeNetParts [51] – the average
number of parts/mIOU in our categories is 3.75/86.7%.

Table 5 shows an evaluation of the Monolithic and Search-based baselines
against ChangeIt3DNet. Our model’s ability to preserve details from the source
shape (minimal GD score) while maximizing the LAB score demonstrates a
general ability to change shapes as to become consistent language descriptions.
Specifically, the reconstruction-based monolithic model does poorly on the LAB
metric, as learning to reconstruct based on language is a difficult problem with-
out capturing all of shape change information within utterances, which rarely
happens even when utterances are concatenated. As such, the associated learn-
ing signals for this task can be noisy, leading to it producing shapes that neither
preserves similarity and nor increases compatibility with the language. Mean-
while, our search-based baseline produces high LAB score, demonstrating that
the shape editor module learns to produce updated latents that capture the
described characteristics. However, its GD metric tells us that this in general
produces large variations in the shape as a whole, and identity preservation of
the input shape is largely violated. This further reveals the sparsity of the shape
space with respect to linguistically articulable shape differences, and highlights
the importance of being able to edit shapes instead of retrieving them from a
database. Figure 4 shows qualitative examples of decoded shape-edits with our
ShapeGF-based model, using pointclouds across our three main shape categories.
We also demonstrate meshes extracted from SGF by estimating unsigned dis-
tance fields from its predicted gradients (see[6] for details) for a few of these
pointclouds (Figure 5). More examples including failure cases are in the Supp.

Table 6 shows the evaluation metrics on variants of the ChangeIt3DNet ar-
chitecture when varying whether the shape editor module predictions are decou-
pled (expressed as a product of a magnitude and a unit norm latent direction)
and whether the neural listener compares the update candidate with the orig-
inal distractor (self-contrast) or the groundtruth target. Our results show that
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Table 5: Quantitative comparisons for three baselines solving ChangeIt3D. A
‘monolithic’ approach that directly learns how to reconstruct the target from the dis-
tractor based on all linguistic differences expressed by an annotator; vs. a search-based
approach that instead of decoding a reconstruction, finds its closest training example
in the generator’s latent space vs. our final, modular approach that disentangles the
generation from the discrimination problems (ChangeIt3DNet).

Baselines GD (↓) LAB (↑) CP (↓) l-GD (↓)

Monolithic 0.563 51.8 1.4 1.50
Neighbor-Search 1.388 76.8 0.2 4.09

ChangeIt3DNet (main) 0.356 77.7 3.8 0.818

Table 6:Ablations for ChangeIt3DNet.We report the effect of two choices. First, we
measure the effect of decoupling the produced editing-latent in a unit-norm direction
latent and a scalar-magnitude, instead of a single joint latent (Decoupled). Second, we
report the effect of applying the listening-based loss between the input distractor and
its edited version (Self-contrast) vs. contrasting the edited version against a separate
ground-truth target from ShapeTalk. We use the metrics of Section 4, on averages over
three shape classes (chair, table, lamp). GD and l-GD are based on Chamfer distance,
scaled by 10e-4; LAB and CP are percentages.

Decoupled
Self

GD (↓) LAB (↑) CP(↓) l-GD (↓)
Contrast

✗
✗ 0.593 82.2 5.3 1.335
✓ 0.366 76.9 3.9 0.855

✓
✗ 0.538 82.6 5.0 1.219
✓ 0.356 77.7 3.8 0.818

a decoupled shape editor is better regardless of whether the neural-listener uses
self-contrast, and that self-contrast improves identity preservation (GD), CP and
localized GD, but sacrifices some utterance-compatibility (LAB). This trade-off
between identity preservation and utterance-compatibility is further explore in
more ablation experiments presented in the Supp.

7 Conclusion

In this paper we introduce a new task, that of language-driven edits and defor-
mations of 3D models, called ChangeIt3D. Towards this objective we release a
new dataset, called ShapeTalk, containing over 500K contrasting language ut-
terances differentiating two shapes – an order of magnitude larger that any
other comparable dataset. We illustrate the potential of this data by exhibiting
a general framework for adding a neural listener to a variety of backbone 3D
representations and propose evaluation metrics for the ChangeIt3D task.

We hope that future works will build on this foundation and make language-
guided 3D shape editing widely accessible and useful.
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